# CONTROLLED IMPEDANCE

## WHAT IS IMPEDANCE?

Impedance is the combination of the capacitance and inductance of a circuit when operated at high frequency. Though also measured in Ohms, it is somewhat different than resistance which is a DC characteristic. Impedance is an AC characteristic, meaning that it is related to frequency, resistance is not.

## WHAT IS CONTROLLED IMPEDANCE?

Unless you have carefully designed the trace and its environment, impedance is typically “uncontrolled”, meaning that impedance will vary in value from point to point along the trace.

At high frequencies, PCB traces do not behave like simple connections, controlled impedance helps us ensure that signals are not degraded as they route around a PCB.

Essentially, controlled impedance is the matching of substrate material properties with trace dimensions and locations to ensure the impedance of a trace’s signal is within a certain percentage of a specific value. Controlled impedance boards provide repeatable high frequency performance.

## WHEN TO USE CONTROLLED IMPEDANCE

When a signal must have a particular impedance in order to function properly, controlled impedance should be used. In high frequency applications matching the impedance of PCB traces is important in maintaining data integrity and signal clarity. If the impedance of the PCB trace connecting two components does not match the components’ characteristic impedance, there may be increased switching times within the device or the circuit. There may also be random errors.

## WHAT DETERMINES CONTROLLED IMPEDANCE?

The characteristic impedance of a PCB trace is typically determined by its inductive and capacitive reactance, resistance, and conductance. These factors are a function of the physical dimensions of the trace, the dielectric constant of the PCB substrate material, and dielectric thickness. Typically PCB trace impedance can range from 25 to 125 ohms. The impedance value generated from the PCB structure will be determined by the following factors:

– Width and thickness of the copper signal trace (top and bottom)

– Thickness of the core or prepreg material on either side of the copper trace

– Dielectric constant of the core and prepreg material

– Distance from other copper features

## APPLICATIONS OF CONTROLLED IMPEDANCE

Controlled Impedance should be considered for PCBs used in fast digital applications such as:

– Telecommunications

– Computing 100MHz and above

– High Quality Analog Video

– Signal Processing

– RF Communication